How to get confidence score of the binary classification using iDesktopX?
2EXP 2024.12.24
In the machine learning process using iDesktopX for example is binary classification, how do we get the confidence score of our inference model?

1 Answer

The confidence score of the inference model can be calculated by the ImageryInference module of iobjectpy, the example code is showing as below:

imagery_inference = ImageryInference(model_path=model_path, gpus=[0], batch_size=1)
imagery_inference.binary_classify_infer(input_data=dom_path, out_data=out_data,
                                        out_dataset_name=out_dataset_name,
                                        offset=128, result_type='grid', confidence_map=True)

After run this, import the output data to iDesktopX, and the confidence score will be shown as the pixel value.

15EXP 2024.12.25

Hi, so basically, I already try your suggestion through my iDesktopX Python (for your information I already deploy the AI extension and my iDesktopX Python Environment already has iobjectspy in its packages) with this code:

imagery_inference = ImageryInference(model_path="C:\Satria\Supermap ID\Opty\BIG\Lintasarta\Test GeoAI\Binary Classification\Image Sampling\Model\saved_model_segformer\saved_model.sdm", gpus=[0], batch_size=1)
imagery_inference.binary_classify_infer(input_data="c:\satria\supermap id\opty\big\lintasarta\test geoai\binary classification\image sampling\image_sampling.udbx\DOM_Atas", out_data="c:\satria\supermap id\opty\big\lintasarta\test geoai\binary classification\image sampling\image_sampling.udbx",
                                        out_dataset_name='confidence',
                                        offset=128, result_type='grid', confidence_map=True)

The error is:

Traceback (most recent call last):
  File "<input>", line 1, in <module>
NameError: name 'ImageryInference' is not defined

After that, I try following the iObjectpy guide from website (https://iobjectspy.supermap.io/html_en/api/iobjectspy.ml.vision.html?highlight=imageryinference#iobjectspy.ml.vision.ImageryInference.binary_classify_infer). So my code being like this:

imagery_inference = iobjectspy.ml.vision.ImageryInference(model_path="C:\Satria\Supermap ID\Opty\BIG\Lintasarta\Test GeoAI\Binary Classification\Image Sampling\Model\saved_model_segformer\saved_model.sdm", gpus=[0], batch_size=1)
imagery_inference.binary_classify_infer(input_data="c:\satria\supermap id\opty\big\lintasarta\test geoai\binary classification\image sampling\image_sampling.udbx\DOM_Atas", out_data="c:\satria\supermap id\opty\big\lintasarta\test geoai\binary classification\image sampling\image_sampling.udbx",
                                        out_dataset_name='confidence',
                                        offset=128, result_type='grid', confidence_map=True)

Then appears an error like this:

Traceback (most recent call last):
  File "<input>", line 1, in <module>
NameError: name 'iobjectspy' is not defined

So, after that I add some syntax to import iobjectspy:

import iobjectspy

imagery_inference = iobjectspy.ml.vision.ImageryInference(model_path="C:\Satria\Supermap ID\Opty\BIG\Lintasarta\Test GeoAI\Binary Classification\Image Sampling\Model\saved_model_segformer\saved_model.sdm", gpus=[0], batch_size=1)
imagery_inference.binary_classify_infer(input_data="c:\satria\supermap id\opty\big\lintasarta\test geoai\binary classification\image sampling\image_sampling.udbx\DOM_Atas", out_data="c:\satria\supermap id\opty\big\lintasarta\test geoai\binary classification\image sampling\image_sampling.udbx",
                                        out_dataset_name='confidence',
                                        offset=128, result_type='grid', confidence_map=True)

Then appears an error like this:

Traceback (most recent call last):
  File "<input>", line 3, in <module>
AttributeError: module 'iobjectspy.ml' has no attribute 'vision'

What step must I take to get the confidence score as the pixel value?

Hi Satria, to check if you have correctly deployed the python environment, try to run the example script under the path "..\resources_ml\example\example_binary_classification_infer_building.py":
1. Open the script in a python compiler
2. Configure the corresponding python runtime environment
3. change the Line 12 to you own output direction, for example:

out_dir = r"D:\SupermapLearn\AIpy"

4. Run the script, and check whether the script can be successfully executed

If it cannot be executed, please check whether your environment has been configured correctly; 
If it can be executed, please check whether you are correctly reference the corresponding module, the reference syntax should be like this:

from iobjectspy.ml.vision import ImageryInference

Hi, thanks for your advice. Here is my script that I use to get confidence map:

import os
import time
import warnings

warnings.filterwarnings('ignore', category=FutureWarning)
from iobjectspy.ml.vision import ImageryInference

#curr_dir = os.path.dirname(os.path.abspath(__file__))
resource_ml_dir = r"C:\Supermap\SuperMap iDesktopX 11i\resources_ml"
data_dir = r"C:\Satria\Supermap ID\Opty\BIG\Lintasarta\Test GeoAI\Binary Classification\Image Sampling"
model_dir = r"C:\Satria\Supermap ID\Opty\BIG\Lintasarta\Test GeoAI\Binary Classification\Image Sampling\Model\saved_model_segformer\saved_model.sdm"
out_dir = r"C:\Satria\Supermap ID\Opty\BIG\Lintasarta\Test GeoAI\Binary Classification\Image Sampling\Image_Sampling.udbx"


def example_predict():
    dom_path = r"C:\Satria\Supermap ID\Opty\BIG\Lintasarta\Test GeoAI\Binary Classification\Image Sampling\Image_Sample\DOM_Atas\DOM_Atas.tif"
    model_folder = model_dir
    out = out_dir
    out_dataset = 'confidence_building'
    start_time = time.time()
    imagery_inference = ImageryInference(model_path=model_folder, gpus=[0], batch_size=1)
    imagery_inference.binary_classify_infer(input_data=dom_path, out_data=out, out_dataset_name=out_dataset,
                                            offset=0, result_type='grid', confidence_map=True)

    end_time = time.time()
    print('Extraction completed, took a total of {}s, result data saved in {} dataset under {} data source'.format(
        end_time - start_time, out, out_dataset))
    
if __name__ == '__main__':
    example_predict()

Then the result in my iDesktopX python is:

The result of image 'DOM_Atas' have been saved to 'confidence_building'!
Successfully cleared temporary folder:C:\Satria\Supermap ID\Opty\BIG\Lintasarta\Test GeoAI\Binary Classification\Image Sampling\tempSupermapMl_q5jkrxxc
Extraction completed, took a total of 46.60414791107178s, result data saved in C:\Satria\Supermap ID\Opty\BIG\Lintasarta\Test GeoAI\Binary Classification\Image Sampling\Image_Sampling.udbx dataset under confidence_building data source

This is the result of Confidence Map raster:
So finally it can successfully create the confidence map. Thank you.

...